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Summary

Background Determining spatial relationships between diseases and the exposome is limited by available method-
ologies. aPEER (algorithm for Projection of Exposome and Epidemiological Relationships) uses machine learning
(ML) and network analysis to find spatial relationships between diseases and the exposome in the United States.

Methods Using aPEER we examined the relationship between 12 chronic diseases and 186 pollutants. PCA, K-means
clustering, and map projection produced clusters of counties derived from pollutants, and the Jaccard correlation
between these clusters with chronic disease geography (defined as groups of counties with high chronic disease
prevalence rates) was calculated. Disease-pollution correlation matrices were used together with network analysis to
identify the strongest disease-pollution relationships. Results were compared to LISA, Moran’s I, univariate, elastic
net, and random forest regression.

Findings aPEER produced 68,820 human interpretable maps with distinct pollution-derived regions, and
acetaldehyde/benzo(a)pyrene was found to be strongly associated with hypertension (J = 0.5316, p = 3.89 x 1072%),
stroke (] = 0.4517, p = 1.15 x 107'%), and diabetes mellitus (J = 0.4425, p = 2.34 x 10~'*); formaldehyde/glycol
ethers with COPD (J = 0.4545, p = 8.27 x 107""); and acetaldehyde/formaldehyde with stroke mortality
(J = 0.4445, p = 4.28 x 107'%). Methanol, acetaldehyde, and formaldehyde formed distinct regions in the southeast
United States (which correlated with both the Stroke and Diabetes Belts) which were strongly associated with multiple
chronic diseases. Pollutants predicted chronic disease geography with similar or superior areas under the curve
compared to SDOH and preventive healthcare models (determined with random forest and elastic net methods).
Conventional geospatial analysis methods did not identify these geospatial relationships, highlighting aPEER’s utility.

Interpretation aPEER identified a pollution-defined geographical region associated with chronic disease, highlighting
the role of aPEER in epidemiological and geospatial analysis, and exposomics in understanding chronic disease

geography.
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Introduction in the southeast of the country known as the Stroke

Several diseases follow consistent geographical patterns: ~ Belt,”* while a similar region with increased diabetes
stroke, one of the leading causes of mortality in the rates (the Diabetes Belt) has also been defined.® There is

United States, is geographically associated with a region ~ growing evidence that air pollution, in particular, ozone
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Research in context

Evidence before this study

Many chronic diseases, such as diabetes and stroke mortality,
have well defined geographical distributions in the United
States. While the reason for these distributions have been
actively investigated for decades, limited studies have
examined the role of the exposome. To assess the current
scientific literature available, we completed a structured
review in Medline, Google Scholar, and PubMed for any
publications in English up to June 24, 2024 using the
search terms “stroke”, “cerebral infarction”, “isch(a)emic
stroke”, “intracerebral h(a)emorrage”, “h(a)emorrhagic
stroke”, or “subarachnoid h(a)emorrage”, “diabetes” AND
“Stroke Belt”, “Stroke Region”, “Diabetes Belt”, “Diabetes
Region”, or “Disease Belt”. Although there were multiple
studies examining the role of genetics and poverty with
relation to the geographical distribution of diseases, few
examined the exposome and machine learning/artificial
intelligence.

Added value of this study

In this study a machine learning algorithm was developed
which modelled geospatial relationships between chronic
disease rates for 3141 counties and county-level pollution
measures in the United States. aPEER uses unsupervised
machine-learning to assemble geographical locations (like
counties) together into clusters (geographical regions) based
on pollution measures, and then compares these geographical
regions to chronic disease geography (regions with high rates
of chronic disease prevalence). It then finds the best match
between pollutants and diseases by calculating the Jaccard
correlation coefficient between the sets of counties that
comprise the pollution regions and counties in the chronic

and particulate matter (PM2.5), can also influence the
incidence of stroke,® asthma,” and diabetes.® To date,
examination of geographical disease distributions by
population-level variables is limited by the use of con-
ventional statistical techniques, i.e., choropleths,”'® local
indicators of spatial association (LISA)," and the spatial
autocorrelation statistic Moran’s I."> These techniques
cannot systematically examine the geographical associ-
ations between chronic disease, population level
variables and high-dimensional indicators including air-
borne chemicals and water pollutants.”*** Machine
learning and network analysis methodologies coupled
with the availability of large chronic disease,
demographic, and environmental exposure data’ have
created an opportunity to investigate more complex
spatial relationships between diseases and pollutants.
While effects of pollution can be relatively small for
some conditions, the ubiquity of this exposure elevates
the absolute risk at the population level to that of
traditional risk factors.® The exposome (defined by Wild
et al. as the complete set of life-course exposures an

disease regions. aPEER detected significant relationships
between pollutants and several cardiometabolic conditions
(using Jaccard correlation coefficient, acetaldehyde/benzo(a)
pyrene was found to be strongly associated with hypertension
( = 0.5316, p = 3.89 x 1072%), stroke () = 0.4517,

p = 1.15 x 10’127), and diabetes mellitus (J = 0.4425,

p = 2.34 x 107%7); formaldehyde/glycol ethers with COPD

() = 0.4545, p = 8.27 x 1073%); and acetaldehyde/
formaldehyde with stroke mortality () = 0.4445,

p = 4.28 x 107**°). Using just pollution measures, aPEER
consistently identified a region in the southeast United States
which correlated closely with both the Stroke and Diabetes
Belts, and matched the distribution of multiple
cardiometabolic diseases. It was possible to predict the
geographical distribution of high chronic disease rates using
elastic net and random forest regressions from pollution
indicators with similar or superior accuracy (determined by
receiver operator curves) compared to preventive healthcare
or social determinants of health models.

Implications of all the available evidence

It was possible to predict hypertension, COPD, stroke
mortality, diabetes, and stroke rates from pollution indicators
with comparable or superior accuracy compared to
conventional models, and readily identify a region of
increased pollution in the United States that closely matched
the Stroke and Diabetes Belts using machine learning
methods. These results highlight the utility of machine
learning in exploring and analysing spatial data, and the
importance of pollution in predicting the geographical
variation of disease, with implications for cardiometabolic
disease pathogenesis and management.

individual will encounter'*'?) encompasses pollutants
that might impact an individual’s health. Understanding
the regional links between the exposome (ex. air pollu-
tion measures) and the prevalence of different chronic
diseases could promote informed and targeted in-
terventions and policies to mitigate risk in exposed
populations.”” Munzel et al. identified the important role
that the exposome plays in several diseases, and
emphasised that the co-location of pollutants in the
pathogenesis of disease, as well as the role of machine-
learning in understanding the exposome needs further
investigation,'® while Fang et al. noted that the high-
dimensional data used to quantify the exposome re-
quires reliable statistical analysis methods."

Here, we present a computational pipeline called
aPEER (algorithm for Projection of Exposome and
Epidemiological Relationships) which uses unsuper-
vised machine-learning to assemble geographical loca-
tions (like counties) together into multiple groups or
clusters (geographical regions) based on pollution
measures. Once these groups of counties have been
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created, they are then compared to groups of counties
with high rates of chronic disease prevalence (these
groups are referred to as chronic disease geography). It
then finds the best match between pollutants and dis-
eases by calculating the Jaccard correlation coefficient
between the sets of counties that comprise the pollution
regions and counties in the chronic disease regions
(Fig. 1). Using a combination of principal component
analysis (PCA), K-means clustering, geographical pro-
jection, correlation and network analysis (using the
Jaccard correlation coefficient”) to quantify the correla-
tion Dbetween groups of geographical subregions
(counties), we identified pollutants in the exposome
which were strongly geospatially associated with a dis-
ease. Disease-pollution relationships were then validated
based on their ability to predict the geographical distri-
bution of regions with high rates of chronic disease
prevalence using elastic net and random-forest models.
aPEER identified geospatial relationships between
multiple chronic diseases and key pollutants that were
strongly predictive of chronic disease prevalence. These
findings underscore the importance of understanding
the potential impact of the exposome on chronic disease
prevalence.

Methods

Data sources

The database generated for this study consisted of 226
indicators for 3141 counties (the complete set of in-
dicators from Centre for Disease Control (CDC) PLA-
CES, Environmental Protection Agency’s (EPA)
EJSCREEN, and EPA AirToxScreen databases) inte-
grated into a dataframe in Python (version 3.9) using
Pandas (version 1.3.4).

Health-related indicators for 3141 US counties
including rates of chronic disease, participation in pre-
ventive services, and risk factors were extracted from the
Behavioural Risk Factor Surveillance System (BRFSS)
and available through the 2023 CDC PLACES database’!
(Supplementary Table S1). From these datasets we
identified 11 disease and health-related measures for
analysis (based on the leading contributors to disability-
adjusted life years (DALYs) in the United States?),
specifically, arthritis, asthma, chronic obstructive pul-
monary disease (COPD), cancer, coronary heart disease,
depression, diabetes, hypertension, obesity, renal dis-
ease, and stroke county-level disease prevalence. Stroke
mortality prevalence data for ages 35 or older was
downloaded from the CDC Stroke Death Rates database
(between 2017 and 2019).* High disease prevalence or
high stroke-mortality counties were defined as having
age-adjusted county-level prevalence rates >70th
percentile.

Pollution data for 9 pollution indicators along with
seven social determinants of health (SDOH)/health eq-
uity census-tract level measures was extracted from the
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Environmental Protection Agency (EPA) Environmental
Justice (EJSCREEN) 2021 database,* together with 177
chemical ambient air concentrations from the EPA’s
2018 AirToxScreen database” reported at the census
block group level (in pg/m?®), and calculated at the
county level by population-weighting the census block
group level exposures and then calculating the sum for
each county from the blocks. This resulted in annual
average pollution levels for each county calculated by
county FIPS. Together, the EJSCREEN and Air-
ToxScreen measures resulted in 186 pollution measures
examined in this study. Geographical boundary infor-
mation for counties, in the form of GeoJSON, were
obtained from the US Census TIGER database.”® The 9
EJSCREEN pollution indicators included particulate
matter 2.5, ozone, traffic proximity, lead paint exposure,
superfund proximity, RMP facility proximity, hazardous
waste proximity, underground storage tank exposure,
and wastewater discharge exposure (Supplementary
Table S1). All models were adjusted to include county-
level percent minority, percent linguistic isolation, and
percent unemployed rates.

The year of pollution exposure was selected to pre-
cede the year when chronic disease rates were reported.

Finding disease-pollution associations with aPEER
The aPEER (algorithm for Projection of Exposome and
Epidemiology Relationships) computational pipeline
was developed to find geographical associations between
chronic diseases and the exposome (Fig. 1). In a con-
ventional supervised machine-learning model, a
dependent variable y (such as chronic disease preva-
lence at the county level) would be predicted from a set
of independent variables x;, x,, ...x, (corresponding to
county-level exposome/pollution measurements). How-
ever, this conventional approach is limited by its
inability to capture geospatial relationships. To address
this geospatial modelling gap, aPEER uses a different
approach utilising unsupervised machine-learning.
First, sets of counties derived from pairs of county-
level pollution measures were defined using PCA, K-
means clustering, and map projection. These maps (sets
of counties) were derived from pollution pairs (we used
pairs of pollutants, because at least 2 variables are
required for PCA and K-means clustering) which
comprise a set of variables Xnjhanol-acetaldehyder XMethanol-
formaldehydes --Xn- Then, using county-level disease preva-
lences for stroke, hypertension, and other chronic con-
ditions, groups of counties with prevalence rates > 70%
(referred to as chronic disease geography) were defined
as Ystroker YHypertensions --¥n- We then measured the cor-
relation between pollution regions {Xyethanol-acetaldenydes
XMethanolformaldehyde» --Xn} and chronic disease geogra-
phies {Vsiroker Yrypertensions --¥Yn} Using the Jaccard corre-
lation coefficient | (which measures the number of
common counties between the set of high-prevalence
disease counties and pollution counties), with the
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Fig. 1: The 6-Step aPEER workflow. Step 1: Generate reference maps of chronic disease prevalence and stroke mortality (>70th percentile). Step
2: Clusters derived from principal component analysis (PCA) and k-means clustering of 186 pollutants projected on a US map. Step 3: Compare
disease and pollution maps using Jaccard correlation coefficient (J). Step 4: Network analysis used to prioritize strongest relationships and
identify key disease-related pollutants. Step 5: Findings benchmarked by examining how closely geographical distribution of key pollutants
resembles disease maps. Prediction of disease prevalence by pollutants compared to known predictors like risk factors and SDOH. Step 6:
Examine relationships among disease-pollution hubs using hierarchical clustering analysis.

highest J values identifying the strongest geographically-
defined pollution-disease relationships (resulting in
]accard values J Stroke-(Acetaldehyde-Benzo(a)pyrene)s ] Hypertension-

(Acetaldehyde-Benzo(a)pyrene)s etc) .
In Step 1, we generated 12 reference maps of chronic

disease prevalence and stroke mortality by selecting
counties with chronic disease rates >70th percentile (we
selected 70% as an illustrative example, but also
completed analyses at the 60th, 80th and 90th percen-
tiles as part of a sensitivity analysis described below, see
Supplementary Methods Step 1 for full details). In Steps
2-4, we sought to find the subset of 186 possible pol-
lutants whose geographical distribution best matched
each disease reference map. To derive these pollution-
disease relationships, we performed binary space
decomposition of the 186 pollutants into pairs, and
calculated pollution derived clusters of counties (Step 2,
see Supplementary Methods Step 2 for full details) us-
ing principal component analysis (PCA), K-means
clustering, and map projection for each pair of pollution
indicators. We then calculated correlation matrices be-
tween these pollution-derived clusters and reference
maps using the Jaccard correlation coefficient J (illus-
trated in Step 3 in Fig. 1, which measured the correla-
tion between the set of counties in pollution clusters and

set of counties with high disease prevalence for one of
the 12 chronic diseases (these counties are depicted in a
map of the United States); see Supplementary Methods
Step 3 for full details).

We calculated several thousand disease-pollution
Jaccard correlation coefficients between the sets of
counties derived from pairs of pollutants (such as
methanol-formaldehyde), and individual chronic dis-
eases (such as hypertension). To identify the most sig-
nificant individual pollutants related to a chronic
disease, we constructed a pollution network for each
chronic disease (i.e., 12 separate pollution networks for
hypertension, diabetes, etc) where each node is a
pollutant, and each edge is a Jaccard correlation index
calculated between a given chronic disease and pair of
pollutants (see Fig. 1 Step 3 and 4). The hubs in such a
network indicate a pollutant with several statistically
significant associations to a given chronic disease (Step
4, see Supplementary Methods Step 4).

The key pollutants for each chronic disease from
Steps 2—4 were validated in Step 5: first, key pollutants
(hubs) were used to “assemble” counties into pollution
clusters, and pollution-disease pair with the highest |
correlation coefficients were ranked. Next, we assessed
the ability of pollutants to predict the presence of
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counties with high disease rates using elastic net and
random forest regression, and compared model per-
formance to preventive healthcare and SDOH models.
We also compared aPEER’s performance to known
geospatial analysis methods Moran’s [ and LISA, as well
as a baseline elastic net regression model predicting
county-level chronic disease rates from pollutants (see
Supplementary Methods Step 5). Finally, we examined
the relationship among disease-pollution hubs using
hierarchical clustering analysis of the hubs identified
from the networks (Step 6, see Supplementary Methods
Step 6). We also examined how measurement bias and
uncertainty in disease prevalence and pollution mea-
sures might affect Jaccard correlation coefficient J values
using a sensitivity analysis in which counties with large
confidence intervals were removed and | values recal-
culated (Supplementary Methods Step 8). All analyses
and results were presented by following the MI-CLAIM
checklist.””

Ethics

Ethics approval was not required for this investigation
because the data was publicly available, as no individual-
level or re-identifiable data was used.

Code and data availability
A Python implementation of aPEER can be downloaded
from: https://github.com/andrewdeo7283/apeer.

Role of funders

The funders did not play any role in the study design,
collection, analysis, or interpretation of data, in writing
the report, or the decision to submit the paper for
publication. KTH is funded by NHLBI R03 HL157890,
and AD is funded by the CDC.

Results

In Table 1, the descriptive statistics of the county-level
data used in this study are described, highlighting
measures from EPA’s EJSCREEN and CDC PLACES
data. We were able to identify 3141 counties (out of a
possible 3144 counties as of 2022) with complete sets of
disease and pollution data (with no missingness), rep-
resenting almost 100% of the geographical area and
counties of the United States. The average chronic dis-
ease rates calculated from the county-level estimates
were nearly identical to the national-level rates reported
for these diseases across the United States. We then
identified counties with chronic disease rates >70%
(resulting in about 950 counties for each disease, the
resulting maps for each disease are depicted in
Supplementary Fig. S1). In Supplementary Table S1,
baseline univariate and multivariate elastic net re-
gressions are presented, with the top beta coefficients
listed for the 12 chronic disease measures. The highest
multivariate beta coefficients include those for carbon
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tetrachloride in the obesity model (B = 1199.37,
p =249 x 107") and in the arthritis model (§ = 724.12,
p =459 x 107) and that for formaldehyde with stroke
mortality (B = 565.81, p = 2.77 x 1077).

In Fig. 2, example correlation matrices depicting the
geospatial relationships between pairs of pollutants and
hypertension (Fig. 2a) and of pollutants and stroke
mortality (Fig. 2b) are illustrated (hypertension and
stroke mortality were later found to be among the
highest disease-pollution associations determined by
aPEER using map assembly). Acetaldehyde and form-
aldehyde had many of the highest associations, with the
highest correlations found with pollution pairs
acetaldehyde-benzo(a)pyrene (J = 0.5315, p << 0.01),
formaldehyde-diesel PM (J = 0.5307, p << 0.01), and
acetaldehyde-1,3-butadiene (J = 0.5274, p << 0.01), while
a similar pattern of strong associations was found with
acetaldehyde and formaldehyde and stroke mortality
(Fig. 2b), with the highest associations being benzo(a)
pyrene-acetaldehyde (J = 0.4579, p << 0.01) and
formaldehyde-benzene | = 0.4578, p << 0.01). The cor-
relation matrices for the remaining chronic disease in-
dicators are presented in Supplementary Fig. S2.

In Fig. 3, we sought to model the dependent variable
y, a binary variable that indicated a county had a high
chronic disease prevalence (greater than or equal to the
70% percentile of prevalence rates among counties in
the United States, designated a value of 1), or not
(designated a value of 0) from a combination of inde-
pendent (x) variables, which included pollution mea-
sures, preventive healthcare delivery rates, or
socioeconomic values. The networks for hypertension
(Fig. 3a) and stroke mortality (Fig. 3b), together with
elastic net and random forest models predicting disease
geography from the hub pollutants are presented.
Methanol, acetaldehyde, and formaldehyde were iden-
tified as hubs in both hypertension (8 hubs) and stroke
mortality (3 hubs). Validating the pollution hubs using
elastic net and random forest models revealed very
specific patterns in the area under the curve (AUCs),
with the prevention model performing the best in elastic
net models for hypertension (AUC = 0.9) and stroke
mortality (AUC = 0.8), while the pollution model (con-
sisting of all 186 pollutants) performed best (AUC = 0.93
and AUC = 0.87) for hypertension and stroke mortality
with random forest models (Fig. 3a). The hub pollutant
models consistently outperformed the SDOH models
irrespective of method for both hypertension and stroke
mortality (AUC = 0.79-0.9). In general, the pollution
model outperformed all other models when predicting
the geographical distribution of the other chronic dis-
eases, especially with random forest models (see
Supplementary Fig. S3), with the highest AUC noted for
depression (AUC = 0.94 (random forest), AUC = 0.81
(elastic net)) followed by hypertension (AUC = 0.93
(random forest), AUC = 0.87 (elastic net)). In all elastic
net and random forest models, we found statistically
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Mean Std. 60th N 70th N 8oth N 90th N
Deviation Percentile Percentile Percentile Percentile
EPA EJSCREEN demographics (%)
Minority 23.75 20.22 22.84 1257 30.91 943 40.256 629 54.78 315
Low income 35.58 9.97 37.65 1257  40.84 943 43.833 629 48.30 315
Less than HS education 13.14 6.32 13.50 1257 15.58 943 18.161 629 2137 315
Linguistic isolation 1.88 3.20 121 1257 170 943 2.558 629 4.59 315
Under 5 yrs 5.82 1.26 5.99 1257 6.27 943 6.590 629 7.12 315
Over 64 yrs 18.79 4.66 19.44 1257 20.54 943 22.017 629 24.71 315
Unemployed 5.36 273 5.57 1257 6.19 943 7.036 629 8.43 315
EPA EJSCREEN pollution measures (ug/m3)
Lead paint 0.29 0.15 031 1257 037 943 0.43 629 0.50 315
Diesel particulate matter 0.11 0.08 0.11 1257 0.13 943 0.15 629 0.20 315
Air toxic cancer risk 21.23 11.21 23.49 1257 30.00 958 30.00 788 30.00 315
Air toxic respiratory index 0.27 0.15 0.30 1440 0.33 943 0.40 666 0.43 315
Traffic proximity 38.26 157.16 0.00 3141 0.00 3141 13.44 629 103.57 315
Wastewater discharge 0.08 135 0.00 3141 0.00 3141 0.00 3141 0.00 315
Superfund proximity 0.06 0.10 0.03 1257 0.04 943 0.08 629 0.16 315
RMP facility proximity 0.52 0.55 0.48 1257 0.65 943 0.89 629 130 315
Hazardous waste proximity 0.44 1.00 0.26 1257 0.40 943 0.61 629 1.05 315
Ozone 38.32 12.68 42.02 1257 43.24 943 44.39 629 47.67 315
Particulate matter 2.5 7.13 2.57 8.18 1257 8.58 943 8.91 629 9.30 315
Underground storage tanks 152 2.04 1.30 1257 178 943 238 629 3.38 315
CDC PLACES Health Measures (Population Prevalence (%))
Arthritis 29.28 4.69 30.5 1257 317 962 33.2 635 35.2 321
Hypertension 36.91 6.47 38.1 1273 398 954 421 634 45 317
Cancer 7.55 116 7.8 1380 8.1 1024 85 631 9 328
Asthma 9.95 0.92 10.1 1337 104 983 10.7 679 11.2 318
Coronary Heart Disease 8.20 1.58 8.6 1328 9.1 945 9.5 656 10.1 346
COPD 8.64 224 9 1309 9.6 989 10.4 664 11.6 331
Depression 21.09 3.15 219 1270 22.8 951 23.9 635 25.4 324
Diabetes 12.73 2.62 131 1265 13.9 947 14.9 629 16.2 322
Renal disease 3.51 0.59 3.6 1399 3.8 972 4 667 4.3 338
Obesity 35.97 4.67 374 1271 384 972 39.6 650 41.2 325
Stroke 3.87 0.86 4 1290 4.2 1034 4.5 706 5 350
CDC stroke data (rate)
Stroke mortality 39.32 8.85 40.6 1267 431 949 46 633 50.3 316
Table 1: County-level descriptive statistics for chronic disease and healthcare, pollution indicators and demographic data for 3141 counties used in this
study (N = number of counties equal to or above a county-level percentile cutoff).

significant differences between the AUCs from the hub
pollutant compared to the SDOH and prevention
models, but did not find differences between the hub
pollutant and pollution models (DeLong’s p << 0.01).

The calibration curves for the various elastic net and
random forest models are presented in Supplementary
Fig. S4, with higher accuracy in general found for
random forest models.

After identifying pollution hubs, we compared them
to the g coefficients from elastic net and important
features derived from random forest (Fig. 3c). We found
that formaldehyde, acetaldehyde, and methanol were
consistently highly predictive of hypertension and stroke
mortality. The ordering of formaldehyde, acetaldehyde,

and methanol was very similar between the aPEER
pollution hubs and the beta coefficients derived by
elastic net (Supplementary Fig. S3b, and calibration
curves for elastic net and random forest regression are
depicted in Supplementary Fig. S5). Formaldehyde,
acetaldehyde, and methanol were also found to be
among the top 10 pollution hubs for COPD, depression,
diabetes, and stroke (see Supplementary Fig. S6).

We then determined the strongest disease-pollution
associations by assembling pollution maps from pairs
of pollutants and ranking the associations by Jaccard
correlation coefficient (Fig. 4a), and clustered aPEER
pollution hub degree, pollution-related elastic net f co-
efficients, and random forest pollution-associated
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Fig. 2: The Jaccard correlation coefficient values (p << Bonferroni-adjusted threshold 0.001) between the top 10 pollutants (ranked by Jaccard J)

for (a) hypertension and (b) stroke mortality (map colors are arbitrary).

feature importance values (Fig. 4b). Four out of the five
top assembled map-chronic disease relationships were
related to cardiometabolic conditions, including the
acetaldehyde-benzo(a)pyrene pollution pair for hyper-
tension (J = 0.5316, p = 3.89 x 1072%), formaldehyde-
glycol ether for COPD (] = 0.4545, p = 8.27 x 107""),
acetaldehyde-benzo(a)pyrene for stroke (J = 0.4517,
p = 1.15 x 107'%), acetaldehyde-formaldehyde for stroke

www.thelancet.com Vol 112 February, 2025

mortality (J = 0.4445, p = 428 x 107'%), and
acetaldehyde-benzo(a)pyrene for diabetes (J = 0.4425,
p = 2.34 x 107%) (Fig. 4a). In Fig. 4b-a consistent
pattern of formaldehyde, acetaldehyde, and methanol
clustering together is apparent; these pollutants also
clustered together using p coefficients from elastic net.
These relationships were partly noted after clustering
feature importance from random forest analysis, with
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Fig. 3: (a and b) Pollution networks for (a) hypertension and (b) stroke mortality, with elastic net and random forest models predicting the
geographical distribution of a given disease using pollution hubs compared to SDOH, prevention, and pollution (area under the curve (AUC)
values presented with DeLong’s confidence intervals, and “*” indicates if a model AUC is statistically different compared to the AUC for the "Hub
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(pollution hubs), elastic net (B coefficients), and random forest models (importance). Three pollutants (formaldehyde, methanol, and acetal-
dehyde) consistently appeared irrespective of the analysis method employed (highlighted in red).

acetaldehyde clustering separately from methanol and
formaldehyde (the full list of disease-pollution associa-
tions is presented in Supplementary Fig. S7). To assess
the robustness of the pollution-disease associations
noted with aPEER, we completed a sensitivity analysis
by varying the chronic disease cutoff, using the >60th,
>70th, >80th, and >90th percentiles (Supplementary
Fig. S8). Clustering the results from aPEER and elastic
net results mostly showed acetaldehyde, formaldehyde,
and methanol grouping together at the >70th percentile
cutoff, while less consistent results were noted with
random forest regression, suggesting that aPEER and
elastic net may be methodologically similar.

We compared the findings from aPEER with Mor-
an’s I and LISA, and found that neither of these
methods identified statistically significant geographical
patterns in  pollution or selected  diseases
(Supplementary Figs. S9 and S10), indicating that
aPEER may be more robust when detecting geospatial
patterns in pollution data. We also examined if the
disease-pollution relationships identified by aPEER were
confounded by population levels, but no significant re-
lationships were noted with selected diseases and pol-
lutants (Supplementary Fig. S11). Additionally, we
examined if aPEER was identifying the similarities

between disease and pollution distributions, but no
distributional similarities were apparent
(Supplementary Fig. S12). The pollutants identified by
aPEER as important (hubs) were not identified in the
original baseline elastic net model, highlighting the
limitations of the baseline model. In Supplementary
Fig. S13, we determined how uncertainty in the
county-level chronic disease prevalence measures and
pollution measures could affect the Jaccard correlation
coefficient. Using confidence interval widths as a mea-
sure of uncertainty, we calculated the density distribu-
tions of selected chronic disease and pollutant measure
confidence widths (Supplementary Fig. S13a and b). We
then performed a sensitivity analysis to determine how
the Jaccard correlation coefficient J changed with un-
certainty. For each pollutant and disease, we removed
county outliers with confidence interval widths above
the 99th, 97.5th, and 95th percentiles, and recalculated
sample J, with very little change noted (Supplementary
Fig. S13c) with variations in uncertainty.

Finally, we completed a preliminary qualitative
analysis to determine if aPEER could be potentially used
in time series analysis. To do this, we examined how
stroke chronic disease geography (i.e., counties selected
for high disease prevalence) changed over the years
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Fig. 3: Continued.

2020-2022, as well as the counties produced from
clustering acetaldehyde and benzo(a)pyrene over the
years 2017-2019 (Supplementary Fig. S14). Qualitative
inspection of the disease and pollution maps revealed
that they appeared consistent over time, suggesting that
aPEER could be extended using a time-series model.

Discussion

In this investigation, it was possible to identify previ-
ously unidentified geospatial disease-pollution relation-
ships using the aPEER algorithm between 12 chronic
disease indicators and 186 pollutants, particularly be-
tween hypertension, diabetes, stroke mortality, and
stroke and the pollutants acetaldehyde, formaldehyde,
and methanol (Fig. 4). The associations between acet-
aldehyde, formaldehyde, and methanol and car-
diometabolic diseases identified through correlation
matrices (Fig. 2) and network analysis (Fig. 3a and b)
were confirmed by elastic net and random forest
regression (Fig. 3c), while statistically significant
geographical distributions of diseases were not noted
using conventional methods such as Moran’s I, LISA, or
benchmark univariate/elastic net regression models.
These associations were also persistent even when we
performed a sensitivity analysis varying the cutoffs from
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the 60th-90th percentile, with consistent clustering of
acetaldehyde, formaldehyde, and methanol prominently
noted at the 70th percentile in the aPEER and elastic net
regression analysis (Supplementary Fig. S8), suggesting
that at and above this threshold pollutants begin to play
a significant role in disease prevalence for several car-
diometabolic conditions. Air pollutants were found to be
better at predicting cardiometabolic disease than con-
ventional models based on healthcare system measures
and the SDOH. The fact that aPEER generated a region
from the exposome (especially acetaldehyde, formalde-
hyde, and methanol) that strongly resembled both the
Stroke Belt and Diabetes Belts provides strong evidence
for a potential linkage between stroke mortality, hyper-
tension, diabetes, stroke and other cardiometabolic
conditions and these pollutants. From the results of this
study, three main conclusions can be drawn.

Firstly, aPEER identified a region in the southeast
United States defined by hub pollutants which is
roughly correlated with both the Stroke Belt and Dia-
betes Belts (Fig. 4a), and was highly associated with
stroke, COPD, diabetes, hypertension, and stroke mor-
tality. Partial explanations for regional variations in
chronic diseases focus on risk factors, comorbidities,
lifestyle, and SDOH factors together with the impacts of
structural and environmental racism."”* As well, aPEER
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methanol, formaldehyde, and acetaldehyde closely clustered together, and strongly associated with multiple cardiometabolic diseases (high-

lighted in red).

identified regions on the west coast that had high rates
of stroke mortality, which are not identified using the
conventional Stroke Belt definition. Air pollution mea-
sures such as diesel particulate matter and PM2.5 are
known to contribute to inflammation and stroke, and this
may be one of the major pathways through which air
pollution results in an increase in stroke rates. Many of
the air pollutants identified by aPEER such as formalde-
hyde and acetaldehyde have documented relationships
with chronic diseases such as cardiovascular, respiratory,
and cancer-related conditions, and have been previously
reviewed”). For instance, formaldehyde has been asso-
ciated with stroke mortality, and hypertension,” but there
have been fewer studies characterising these

relationships in the United States. It is possible that these
pollutants directly contribute to the pathogenesis of car-
diometabolic diseases. Another pathway may be indirect,
where air pollutants contribute to risk factors for stroke
and diabetes. More recently, an investigation found an
association between organic aerosols and the Stroke
Belt,’! and recapitulated very similar results to those
found in this investigation. Importantly, in contrast to the
observational associations observed by Pye et al.,’! our
analysis uniquely demonstrated that it is possible to
assemble the Stroke Belt from hub pollutants (Fig. 4a),
and that these pollutants perform nearly the same or
better than established preventive services and SDOH
reference models.
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The ability of aPEER to produce explainable, human-
interpretable maps from simple pollution combinations
partly addresses the explainable artificial intelligence
(XAI) problem of other machine learning techniques
such as elastic net regression and random forest re-
gressions, which rely on “black-box” coefficient optimi-
zation and creation of abstract decision trees,
respectively. In the large correlation matrix of clustered
maps there are several unique maps with distinct
geographical distributions, and aPEER could be used to
better understand how climate change, pollution, and
features such as geographical elevation (which may be
associated with some of the clusters) are correlated with
disease distribution.

Secondly, previous investigations have identified
PM2.5,” ozone,” and selenium (deficiency)' as being
associated with increased Stroke Belt stroke rates, but
few significant environmental predictions or associa-
tions have been otherwise noted. Additionally, previous
studies focused on SDOH/equity factors (and in
particular the African American population) and the
possible cultural and genetic causes of increased stroke;
by contrast, this investigation identified modifiable
environmental factors that comprise the exposome, in
particular air pollution, that might further explain this
risk. Our results may indicate that issues such as envi-
ronmental racism and exposure to specific compounds
should be prioritised for investigation and intervention
not only for stroke mortality, but also for diabetes,
COPD, hypertension, and other chronic diseases with
high AUCs (see Supplementary Fig. S4a and b).

Thirdly, this investigation highlights the role of un-
supervised machine learning in analysing geographical
information and finding associations between different
indicators. By combining dimensionality reduction,
clustering, and regression analysis for validation, it was
possible to detect associations between pollution in-
dicators and chronic diseases that would not normally
be detectable. For instance, using an elastic net regres-
sion model to predict chronic disease rates from 186
different pollutants identified different pollutants
compared to aPEER (except for stroke mortality, where
formaldehyde and methanol were found to be signifi-
cant). This observation may partly explain why pollution
indicators have not been extensively studied previously
for different chronic diseases. For example, Ji et al.”
used a combination of machine learning and multi-
level modelling to analyse environmental and SDOH
associations with stroke, and identified ozone as having
a strong association. While the relationship with ozone
was replicated in our analysis, it did not appear to be the
strongest relationship. This difference in outcome may
be partly due to the data employed by Ji et al., namely
CDC 500 Cities data, which is a subset of the CDC
PLACES data used here.

Exploring and discovering relationships between
multiple diseases and the exposome was not possible

www.thelancet.com Vol 112 February, 2025

using conventional methods such as baseline elastic net
regression, LISA, or Moran’s I, highlighting aPEER’s
utility as a geospatial analysis tool. aPEER is not limited
to pollution data, and can be extended to include other
exposomic or geospatial data, and the ecological associ-
ation of those data with the geographical distribution of
other health indicators. In addition, aPEER produces
clearly demarcated cluster boundaries, which reduces
the need for arbitrary thresholds that sometimes are
used to identify geographical regions. Hence, aPEER
could be used as a general epidemiological tool to
investigate ecological geospatial relationships between
different geospatial measurements (such as pollution
and disease rates) at different geographical resolutions
(such as counties, census-tracts, zip codes, census
blocks, and precincts). This method could be further
enhanced through the incorporation of satellite imagery
to understand better how the built environment could
enhance the prediction of disease rates; in this vein, we
are investigating whether different correlations (such as
an area-weighted Jaccard correlation coefficient or tet-
rachoric correlation) and different clustering methods
(such as generating pairwise disease maps and using 1-
dimensional clustering algorithms) would yield better
results.

Limitations of this investigation include the
ecological nature of the data and relationships exam-
ined: although different geographical resolutions were
used and were found to be concordant, these re-
lationships should be confirmed using individual-level
diagnosis of different chronic diseases and exposures
to air pollution and other pollution indicators. Addi-
tionally, this modelling work was completed in the
United States, and generalizability to other countries is
yet to be determined. Finally, another major limitation
of this work is that the analysis needs to be verified
using other sources of pollution data at different levels
of spatial resolution.

In summary, we identified key pollutants associated
with multiple chronic diseases, such as stroke, hyper-
tension, COPD and diabetes using aPEER. It was
possible to identify pollutants that predicted the geo-
spatial distribution of chronic diseases with higher ac-
curacy than conventional preventive and SDOH factors,
highlighting the importance of the exposome in the
pathogenesis of multiple chronic diseases, and the role
that modifiable environmental exposures play in dis-
ease. Future directions include performing a time-series
analysis with aPEER across multiple years, analysing
smaller regions within the United States (such as cities)
to determine if there are smaller chronic disease regions
such as Stroke or Diabetes belts, creating chronic dis-
ease maps from combinations of diseases, and using
different correlation metrics (a geospatially weighted
Jaccard correlation, or tetrachoric correlation coefficient)
and machine learning models (t-SNE instead of PCA, or
DBSCAN instead of K-means clustering).
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